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Charged magnetosonic solitons propagating in gentle density gradients and wave breaking
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A class of nonrelativistic magnetosonic soliton, where the charge-separation electric field can be as large as
the background magnetic field, is discovered in a strongly magnetized cold plasma, where the electron cyclo-
tron frequency is much larger than the electron plasma frequency. We study how the Mach number of such a
soliton is changed by the presence of a gentle background density gradient. An effective Hamiltonian for the
soliton trajectory is derived, with which one can show that the soliton Mach number increases as the soliton
travels to a background of increasing density, or equivalently, decreasing Alfven speed. The soliton can
generally exchange its energy, momentum, and mass with the background plasmas. Our results also show that
the soliton may undergo wave breaking at a finite background Alfven speed.@S1063-651X~97!12901-4#

PACS number~s!: 52.35.Sb, 52.35.Mw, 98.38.Mz
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I. INTRODUCTION

In the context of astrophysics, collisionless plasmas t
to occur in energetic environments where the plasmas are
and particle collisions are rare. Examples include the neu
star magnetospheres, pulsar nebulas, extended extraga
radio sources~jets!, and others. These environments are
lieved to be so energetic that characteristic waves, suc
Alfven waves, and flows all have speeds close to the spee
light. There is a variety of observational evidence substa
ating the above assessments. For example, high-resol
radio maps show that bright blobs in the inner part of
extragalactic radio sources move at relativistic speeds a
from the cores@1#. Another distinct example is the ‘‘wisps’
in the Crab Nebula@2–6#. Optical images show that th
wisps waive quasicoherently on a time scale of several y
and a length scale of a couple of light years. No ma
whether they are blobs or wisps, these observationally id
tifiable objects are some forms of large-amplitude coher
fluctuations. These phenomena sparked the recent surg
interest in the study of solitons and shock waves in rela
istic collisionless plasmas@5–11#.

Several years ago, an interesting class of relativistic s
tons in magnetoplasmas was discovered@9,10#. They differ
from solitons in an electron-positron pair plasma@12# in that
ion inertia plays an important role in setting up charge se
ration within the solitons, whereas electron inertia can
ignored altogether; thus electrons serve only to provide
electrically neutralizing background. These solitons ha
typical length scales on the order of the ion gyroradius, m
larger than that of the conventional magnetosonic solit
for which the electron inertia is of primary importance@12#.
Although ideal solutions for solitons in isolation have be
obtained, one probably needs to be somewhat more con
vative in applying them to explain the observed moving o
jects directly, since the astrophysical environments are no
ideal as one assumes to obtain these solutions. Amon
nonideal factors, we are most interested in the effects
gentle changes in the environment on the solitons. As s
tons propagate they gradually enter new environments, a
question naturally arises as to whether the solitons may
come more energetic or less energetic. Or, to put it ano
551063-651X/97/55~1!/1002~9!/$10.00
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way, do they become more focused or less focused? If
solitons become more focused, will they reach a state
wave breaking?

This question is important not only because of the triv
energetic consideration, but because an ever-increasingl
cused soliton can also be prone to coupling to dissipat
thereby heating the background plasmas which emit the
served bright light. This phenomenon is anticipated from
common experience that when shallow water waves
proach the sea shore, the waves become steeper and st
and finally break up not far from the shore. It is well know
that the existence of a soliton arises from a detailed bala
between the wave dispersion and nonlinear focusing. Pro
gation of a soliton into a gradually changing environme
must also affect such fine balance in some subtle ways
certain circumstances, wave breaking analogous to tha
the shallow water waves may occur. Our program of study
follow aims at an understanding of this aspect of solitons
relativistic magnetoplasmas. This series of studies beg
with the present analytical work, that addresses a sim
problem for the propagation of a nonrelativistic soliton in
magnetized plasma with a gentle density gradient. An und
standing of its fundamental mechanism will surely help
proceed to address the ultimate problem for the relativi
solitons.

This program requires us to construct a counterpart of
aforementioned class of relativistic solitons in the nonrela
istic regime. As we shall show in the following sections, t
procedure of takingc→` for our relativistic soliton solutions
must be carried out with caution since certain approxim
tions, such as ignoring the electron inertia, which can b
good approximation for the relativistic regime but may n
necessarily be so in the nonrelativistic regime, have b
adopted. For example, one must address which of the q
tities vpe , the electron plasma frequency, andvce , the elec-
tron gyrofrequency, is larger in the nonrelativistic cas
Sincev ce

2 /v pe
2 5miVA

2/mec
2, whereVA and c are, respec-

tively, the Alfven speed and light speed andmi andme the
ion mass and electron mass, there is no such problem in
relativistic regime whereVA→c. However, it becomes a
problem in the nonrelativistic limit, in that the limitc→`
must confront the neglect of the electron inertia~me→0!. In
1002 © 1997 The American Physical Society
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55 1003CHARGED MAGNETOSONIC SOLITONS PROPAGATING . . .
fact, careful scrutiny shows that, for the present analyse
be self-consistent, one must choose the regime
vpe/vce→0, suggesting that we are confined to strong
magnetized plasmas, which are likely to exist in astrono
cal environments, such as at the active galactic nuclei@13#.
Since the soliton speed is greater than the Alfven speed,
strongly magnetized regime also implies that it is in the
ergy range well above 1 MeV, but still less than 1 GeV d
to the nonrelativistic treatments for ions. Thus this is t
natural extension from the fully relativistic regime to th
nonrelativistic regime. For simplicity, we shall also assu
that both electrons and ions are cold.

Before beginning the analyses, we want to make so
approximate arguments justifying why such a soliton sho
exist. Whenvce@vpe , electrons are strongly tied to the fie
lines, and any movement of electron guiding centers ac
the magnetic fields will have to drag the field lines along;
this sense, electrons appear much heavier than the ion
serving as a relatively rigid neutralizing background. Wh
the flow enters the soliton where the electrostatic potentia
positive, the ions are immediately retarded from the poten
well, whereas the electrons continue to march ahead toge
with the field lines. These overshooting ions eventually
pulled back with the magnetized flow because of the res
ing force. Charge separation due to the demagnetized
motion must in turn sustain the needed electrostatic pote
self-consistently.~Of course, the magnetized electrons a
not infinitely heavy, and therefore their guiding centers
fact are mildly retarded in response to the pull of the io
thereby yielding a local pileup of field lines.! It is obvious
from the above arguments that the length scale of the so
must be of the order of the ion scale. On the other hand,
above picture will have to break down if electrons are n
strongly tied to the field lines, i.e.,vce!vpe . In this regime,
the electrons move more freely across the field lines, and
respond to the electric force more sensitively. Therefore,
only can electrons easily shield out the charge-separa
electric field, but the electromagnetic effects can become
primary importance. In this weakly magnetized regime, el
trons play a prominent role, and hence the length scale
interest is expected to be of the electron inertia length s
c/vpe @14,15#. ~A further elaboration on this issue is given
the Appendix.!

This paper is organized as follows. Section II constru
the ideal solution for a nonrelativistic soliton in isolation. A
action principle is proposed to examine the dynamics of
soliton in a changing environment in Sec. III. This propo
yields an effective Lagrangian of a point particle represe
ing the spatial integral of the soliton. Armed with this resu
the soliton trajectory for any given static background dens
profile is solved in the form of the integral of motion. W
give discussions and conclusions in Sec. IV.

II. NONRELATIVISTIC MAGNETOSONIC SOLITONS

The physical condition to be considered consists o
background magnetized plasma with the magnetic fieldB in
thez direction and a compressional wave propagating in
x direction. The gentle background density gradient is in
direction of wave propagation. For the construction of
ideal soliton solution, we may ignore the density gradient
to
at
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the time being. Associated with the wave are not only
compressional density and magnetic fluctuations, but a
velocity fluctuations of the ions and electrons in bothx andy
directions. These velocity fluctuations are responsible for
sources of the charge-separation electric field and magn
field fluctuations. We may denoteuj andv j as thex andy
components of the velocity, respectively, and the subscrij
denotes the index for the species which can be either io
electron.

In the following analysis, we assume that the absol
value of the charge for the ion is the same as that of
electron for the sake of simplicity. Letuqj u5e. It is straight-
forward to relax this assumption to a general case.

In the wave rest frame, the problem becomes a tim
independent one, and we have the following governing eq
tions. The continuity equation for either species reads

d

dx
~njuj !50. ~1!

The momentum equations for either species are

mjuj
duj
dx

5qj SEx1
v j
c
BzD ~2!

and

mjuj
dv j
dx

5qj SEy2
uj
c
BzD . ~3!

The relevant Maxwell’s equations are

dBz
dx

52
4p

c (
j
qjnjv j , ~4!

dEy
dx

50, ~5!

and

dEx
dx

54p(
j
qjnj . ~6!

Equation~5! immediately gives

Ey5E05const. ~7!

Before manipulating further algebra, we turn to a discu
sion of the physical quantities, which a subscript ‘‘0’’ de
notes, in the uniform far upstream region. There is no el
tric potential gradient far upstream, and hence the elec
field becomes

E05E0ŷ. ~8!

Together with this relation, Eq.~2! yields that

v j050, ~9!

Eq. ~3! yields

uj05c
E0

B0
[u0 , ~10!
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1004 55TZIHONG CHIUEH AND FENG-RUEY JUANG
theE3B drift, and Eq.~6! yields

ni05ne0[n0 . ~11!

It is a straightforward matter to construct the conserv
fluxes. Besides Eq.~1!, that represents the conservation
mass flux for each species, which yields

njuj5n0u0 , ~12!

we also have a conserved energy flux

T015 1
2(

j
nou0@mj~uj

21v j
2!#1

c

4p
E0Bz , ~13!

where the second term on the right is the Poynting flux, a
there are conserved momentum fluxes in thex andy direc-
tions, respectively:

T115(
j
n0u0~mjuj !1

1

8p
~Bz

21E0
22Ex

2!, ~14!

and

T215(
j
n0u0~mjv j !2

1

4p
E0Ex50. ~15!

The second equality of Eq.~15! results from the vanishing
v j0 andEx0 far upstream.

Analogous to what was discovered in the previous re
tivistic case, we may also construct another conservation
for a time-independent problem in the nonrelativistic regim
Multiplying the x component of the momentum equatio
Eq. ~2!, by mjqj /e, and summing up the resultant equatio
for both species, we find that

1

2

d

dx
@~miui !

22~meue!
2#5eExFmi1me1

E0Bz

4pn0u0c
G

5eExF(
j
mj S 12

uj
21v j

2

2c2 D
1

T01

n0u0c
2G , ~16!

where we have employed Eq.~15! to obtain the first equality,
and Eq.~13! to obtain the second equality. For a nonrelat
istic formulation where we have already ignored terms
orderv j

2/c2, terms of this order appearing in Eq.~16! should
have been dropped for the sake of self-consistency. Be
the obvious terms in the right side of the second equality
Eq. ~16!, we may examine the term proportional toT01 in Eq.
~16!. This term is also of orderv j

2/c2 ~or VA
2/c2! compared

with the remaining term, and thus we drop it. Also ignori
me in comparison withmi , we finally reduce the right side o
Eq. ~16! to emiEx . Let Ex[2df/dx, and we arrive at the
conservation law

Q5 1
2 ~mi

2ui
22me

2ue
2!1mief. ~17!
d
f

d

-
w
.

-
f

de
f

Thus far, we have completed our construction of conser
tion laws for such a dynamical system, to be followed
some algebraic manipulations for deriving a useful solit
equation.

We proceed to assume that the electrons are frozen in
field lines by ignoring the electron inertia in Eqs.~2! and~3!.
As it will become clear that the change ofBz is of order the
background fieldB0, the electron driftue(5cE0/Bz) is
therefore of orderu0(5cE0/B0). In addition, the ion
x-component velocityui will also be of orderu0, so it hence
follows thatmeu e

2!miu i
2 andmeue!miui . These orderings

of terms take effects on Eqs.~14! and~17!, and also on thex
component of the kinetic energy in Eq.~13!, where these
electron contributions can be neglected.

Next we compare the transverse momentum fluxes of i
and electrons in Eq.~15!. If the ion transverse momentum
flux dominates and we ignore the electron contribution
follows that

v i5E0Ex/4pmin0u0 . ~18!

Since the electrons undergo theE3B drift, we have

ve5mecEx /meBz . ~19!

Comparing the two transverse momenta, we find t
miv i /meve;O(miVA

2/mec
2);O(v ce

2 /v pe
2 ). As mentioned

in Sec. I, we shall fix our parameters in the strong magn
field regime, and therefore the above ratio is much grea
than unity; the ion transverse momentum flux indeed do
nates in Eq.~15!, indicating the validity of theE3B electron
drift motion.

With all the above considerations, we may solve forBz
from Eq.~13!, with ui expressed in terms off from Eq.~17!,
and v i and ve in terms ofEx from Eqs.~18! and ~19!. Fi-
nally, as we substitute thisBz into Eq.~14! and again express
ui in terms off, we obtain an equation that almost relatesEx
with f,

1

B0
2 S df

dx D 2112X4pen0
B0
2 f2

1

2B0
2 S VA0

2

2c2
1
mec

2

miVA
2 D S df

dx D 2
11C22 8pmin0u0

2

B0
2 F S 12

2ef

miu0
2D 1/221G50. ~20!

The third term in Eq.~20! contains those that are propo
tional to (df/dx)2. They have small coefficients in compar
son with the first term in Eq.~20!, as we are confined to a
nonrelativistic ~VA

2/c2!1! and strongly magnetized
(mec

2/miVA
25v pe

2 /v ce
2 !1) plasma. One may trace the or

gins of these negligibly small terms, and find that they co
from the ion and electron transverse kinetic energies,miv i

2/2
andmev e

2/2, respectively, in Eq.~13!. Thus not only does the
electron inertia completely drop out in the final equation, b
the ion transverse energy flux also drops out.

Rearranging Eq.~20! and dropping the undesired term
we finally arrive at the soliton equation

1

2 S dF

dh D 21U~F!50, ~21!

where
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55 1005CHARGED MAGNETOSONIC SOLITONS PROPAGATING . . .
U~F![
MA

2

2 S ~12A12F!22
MA

2

4
F2D . ~22!

F[2ef/miu 0
2, h[2eB0x/miu 0

2, and MA[u0/VA is the
Alfven Mach number. Note that the length scale of the so
tion is aboutVA/vpi or r cVA/c!r c , where r c is the ion
gyroradius usingu0 as the typical speed. The solutionF
oscillates in the ‘‘potential well’’U~F! from one zero ofU
to the other.

Plotted in Fig. 1 areU~F! for various Mach numbersMA .
For smallF, the ‘‘potential’’ U(F)'2M A

2(M A
221)F2/8,

yielding a decaying solutionF'exp(2MAAMA
221uhu/2) at

large distances. The behavior shows that the solution
soliton. WhenMA52, the ‘‘potential’’U~F! becomes singu-
lar atF51, whereU~F!50 and the solution captures a si
gularity. This singular point occurs at the far side zero ofU,
corresponding to a cusp at the soliton peak, where coup
to collisionless dissipation becomes inevitable and the s
ton must break. On the other hand, a soliton of a mode
strength has a typicalEx5O(B0), which is much greater
thanE0 by a factorc/VA . That is, this soliton is dominantly
sustained by the charge separation rather than the ele
current alone.

We may expandU~F! further for a smallF and keep up
to theF3 term. One finds

U~F!52 1
8MA

2~MA
221!F21

MA
2

16
F31O~F4!. ~23!

Up to this order, the soliton solution can be expressed in
analytical form,

F'2~MA
221!sech2SMAA~MA

221!

4
h D . ~24!

This small-amplitude soliton solution can only be se
consistent whenMA21!1, and this expression is identical t
the Korteweg-de Vries soliton of shallow water. The amp
tude scales asMA21, and the length as 1/AMA21. To be
complete, we list relevant physical quantities expressed
terms ofF in this small-amplitude regime,

FIG. 1. Typical ‘‘pseudopotentials’’U~F! in Eq. ~22! for the
soliton solutions. Plotted are the fourU~f!’s for MA51, 1.6, 2, and
2.4 in sequence beginning from the top.
-
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ui5u0S 12
F

2 D , ni5n0S 11
F

2 D ,
Bz5B0S 11

F

2 D , Ex52B0

dF

dh
. ~25!

In addition, we may examine what type of linear waves th
are in association with such solitons by dropping theF3 term
in Eq. ~23!. Differentiating both sides of Eq.~21! with re-
spect tox, we take a spatial Fourier transform,d/dx→ ik,
and let the phase velocityv/k5u0 . We obtain the dispersion
relation v2/k25VA

2/(11k2VA
2/v pi

2 ), which recovers the
compressional Alfven wave at long wavelengths.~Also see
the Appendix.!

Thus far, we may cast the question this paper intend
address in the following terms. Given the soliton deriv
above propagating in a gentle density gradient, will its Ma
number increase or decrease? If the former, the soliton
steepen and is prone to collisionless dissipation; if the lat
the soliton will become more dispersive. In the followin
section, this question will be answered.

III. ACTION PRINCIPLE AND INTEGRAL OF SOLITON
MOTION

In the presence of a gently varying static background,
may assume that the soliton remains as a localized dis
bance, not much different from the ideal solution construc
in Sec. II. If we let the ratio of the soliton width to the typica
length scale of the background be a small parametere, the
soliton shape and the Mach number may both change b
amount of ordere. In spite of these changes of ordere, we
assume that the action for the soliton is form invariant, a
functional integral ofF @cf. Eqs. ~27! and ~28! below#. As
long as the form of the action is preserved, the construc
of the soliton trajectory in the following analysis depen
little on how the soliton shape becomes modified.

Since the soliton can be either accelerated or decelera
it is only appropriate to work out this program in the lab
ratory frame of reference, where the background is at r
rather than in the soliton frame as carried out in Sec. II. T
requires us to transform all physical quantities derived ab
to the laboratory frame before the construction of the L
grangian. In the relativistic framework, the Lagrangian de
sity is Lorentz invariant. In the nonrelativistic framewor
the electromagnetic part of the Lagrangian dens
~E22B2!/8p, is frame independent, the particle pa
mjnjv j

2/2 should be changed tomjnj ~vj2u0x̂!2/2 when
changing to the laboratory frame, and the interaction p
S(qjnjv jAy/c2qjnjf) also remains the same. Moreove
we must also ignore some minor terms in the particle kine
energy, such as the electron inertia andmiv i

2/2 in the La-
grangian density, in order to be consistent with the expr
sion of T01 used in deriving the soliton. It follows that th
total Lagrangian in the laboratory frame becomes

L5E
2`

` S 12 mini~ui2u0!
22

1

8p
~Bz

22Ex
22E0

2!

1
1

4p
f
d2f

dx2
2

1

4p
Ay

dBz
dx Ddx. ~26!
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Certain technicalities must be mentioned before compu
L. That is, the last term in the integral involves the vec
potentialAy , which does not appear in our previous analys
To handle this term, we note that

E
2`

`

Ay

dBz
dx

dx5AyBzu2`
` 2E

2`

`

Bz
2dx

5E
2`

`

~B0Bz2Bz
2!dx.

The second equality arises from another notion that w
x56`, Bz5B0 and

Ayu2`
` 5E

2`

`

Bzdx.

A straightforward but somewhat tedious calculati
shows that the total action can be cast into the form,

S5E L dt, ~27!

where

L52E
2`

` B0
2

16p
dx

2
B0
3MA

3

8p2en0
E
0

Fmax
F

121/A12F

@MA
2F224~12A12F!2#1/2

dF

5L01DL~MA ,n0!, ~28!

where L0 represents the background Lagrangian,DL the
soliton Lagrangian, andFmax[4(MA21)/M A

2. In Eq. ~28!,
we deliberately express all parameters inDL in terms of
MA , n0, andB0 for the sake of convenience when used lat
SinceB0 is uniform, the dependence onMA and n0(x) is
equivalent to dependence onu0 andx; that is, analogous to
the classical particle dynamics, the relevant Lagrangian
function of the soliton velocityu0 and positionx.

Retracing what 12(1/A12F) means in Eq.~28!, we find
that (1/A12F)21}Dni[ni2n0, and that the Lagrangian
of the soliton is nothing more than the kinetic energy of
ion density excessDni ,

DL5 1
2 E

2`

`

miu0
2Dnidx. ~29!

This is a rather surprising result, in that all other contrib
tions from the particle velocity variations and field variatio
associated with the soliton are completely canceled as if
soliton were a localized and structureless density exces
motion.
g
r
.

n

.

a

-

e
in

Having the Lagrangian, we are in a position to constr
the equation of motion using the action principle

dS5E d@L01DL~u0 ,x!#dt50. ~278!

In principle, with the above rather general formulation, o
is not restricted to a static background for determining
equation of motion of the soliton. For a slowly time
dependent background, either one may treat the backgro
as a given function ofx and t, or, to be self-consistent, on
may also consider the mutual interactions between the b
ground and soliton using this Lagrangian formulation. F
the former with a given background, one need not consi
L0, but, for the latter, the full Lagrangian must be taken in
account as shown below.

Variation of L0 yields the equation of motion for the
background, which is, in the present case, reduced to
force balance equation

dB0
2

dx
50, ~30!

or B05const. Without particle pressure, indeed only in a u
form magnetic field can the background maintain force b
ance.

Variation inDL, however, presents some technical dif
culty in obtaining an analytical result. This is becauseF is
some complicated function ofh andMA which has no ana-
lytical expression let alone the integral of Eq.~28!. Hence
the equation of motion can only be constructed numerica

A way to circumvent this technical difficulty and to pro
ceed further is to look for the integral of motion. Fortunate
this is possible because the soliton propagates in a s
background, and the Lagrangian therefore has no exp
time dependence. The constant of motion is the Hamilton
H„u0 ,n0(x)…. Using Eqs.~21! and ~22!, it is a straightfor-
ward matter to obtain an integral expression for the Ham
tonian, defined to be

H[u0
]L

]u0
2L. ~31!

Thus one finds that

H~MA ,n0!5E
2`

` B0
2

8p
dx1

B0
3MA

16p2en0
E
0

Fmax

3
N~MA ,F!

@MA
2F224~12A12F!2#1/2

dF

5H01DH~MA ,n0!, ~32!

where
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N~MA ,n0![MA
2S 2F1

4~22MA!

MA
2 D S 1

A12F
21D 1

2~22MA!F

~12F!3/2

1
~MA

4F214~22MA!~MA
2F14!F~121/A12F!18~22MA!F2/~12F!

MA
2F224~12A12F!2

. ~33!
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HereH0 andDH are the corresponding Hamiltonians for th
background and the soliton, respectively. The exact fu
tional form of DH(MA ,n0) has to be determined from nu
merical integration. OnceDH is determined, we will have
basically fulfilled our goal for this work, in that given a
initial soliton of Mach numberMA(t50), when it enters a
background of different density, we can obtain a differe
value of MA by looking up to the constant contours
DH(MA ,n0).

Plotted in Fig. 2 with the bold line is a contour of consta
DH(MA ,n0). The general trend is thatMA increases with
increasingn0(x) or decreasing background Alfven spe
VA0(x), and the soliton becomes steeper as a result. Bec
of several singular terms in the integrand of Eq.~32!, it may,
at first glance, seem that the integral should diverge
MA52 whenFmax51. These infinities, in fact, turn out to
completely cancel, and a finite total integral is obtained.

Also plotted in Fig. 2 with the thin lines are the contou
of constant total energy contained within the soliton in t
laboratory frame,

DW[E
2`

`

DT008dx5
B0
3MA

3

32p2en0
E
0

Fmax

3
4F16A12F281MA

2F212/A12F

@MA
2F224~12A12F!2#1/2

dF. ~34!

The upper thin line has 1.5 times as much energy as
lower thin line. As expected, the background energy den
can be found to be identical to the background Hamilton
density. What is somewhat unexpected is that the cons
DH contour does not coincide with any of the constantDW
contours. Thus the soliton energy is not conserved a

FIG. 2. The contour~heavy line! of constantDH(MA ,n0) in the
(MA ,n0) phase space, and the two contours~shallow lines! of con-
stantDW in the same phase space; the lower thin line assum
value ofDW, the same asDH, and the upper thin line a value 1.
times as large asDH.
c-
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moves up, or down, the density gradient. In fact, the soli
moves toward the higher energy configurations as the ba
ground density, or the Mach number, increases. One m
further find that neither the soliton momentum nor the solit
‘‘mass’’ ~total number of particles within the soliton! are
conserved. These findings may seem somewhat unu
However, if one realizes that the background can serve
reservoir for the soliton to exchange energy, momentum,
even mass, these results would not be so surprising. As
soliton passes through an inhomogeneous medium,
downstream background left behind by the soliton may
modified by a small amount of ordere. Accumulation of
many changes of ordere, after the soliton travels a long
distance, can eventually produce a finite change in the s
ton energy, momentum, and mass.

In addition, we may take advantage of the soluble regi
of small-amplitude solitons whereMA21!1, and examine
how DH should behave. We expandDL of Eq. ~28! in the
limit of small MA21 andF, and then use Eq.~31! to derive
the Hamiltonian for small-amplitude solitons. Replacing t
soliton solution from that in Eq.~24!, one obtains that

DH}
B0
3

n0e
~MA21!1/21O„~MA21!3/2…. ~35!

In this small-amplitude limit, along the constantDH, the
soliton Mach number changes asMA21}n 0

2.
To understand this result, by which the KdV-type solito

abides, we may look into it from another perspective. T
small-amplitude limit of the soliton energy reads

DW}
B0
3

n0e
~MA21!1/21O„~MA21!3/2…, ~36!

after one carries out similar procedures. Note thatDH and
DW differ only by a constant in this limit, indicating that th
constant energy contours track the constant Hamiltonian c
tours. The soliton energy is conserved regardless of whe
the small-amplitude soliton propagates in an inhomogene
or homogeneous background. Hence we conclude that
only for a finite-amplitude soliton that exchange of ener
with the background is possible.

IV. DISCUSSIONS AND CONCLUSIONS

In a series of works to follow, we aim at a thoroug
understanding of how solitons, in particular relativistic so
tons, travel in a slowly varying environment. Specifically, w
are interested in how and to what extent the soliton can
come more and more focused as it travels through such
environment. As a first step toward this goal, we study
simpler case in the present work, where the soliton travel

a
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a nonrelativistic speed in a cold and strongly magneti
collisionless plasma. A magnetosonic soliton solution
such a plasma is constructed, and the validity of the solu
only holds whenvce@vpe . A soliton of this type is much
like a moving capacitor, charged with an electric field co
parable to the background magnetic field. Although it a
carries a self-consistent electric current to keep the ba
ground magnetic field compressed, the soliton consists
marily of an electrostatic disturbance. This class of solito
differs significantly from the conventional magnetoson
solitons, for which the electron inertia plays an importa
role and the charge-separation electric field becomes n
gibly small @14,15#.

These conventional solitons of an electron inertia len
scale are primarily of electromagnetic disturbances, and
only exist in the opposite regime to what is under consid
ation in the present work.~Consult the Appendix for details.!
In fact, if we compare the Alfven ion lengthVA/vpi with the
electron inertia lengthc/vpe , we find that their ratio
VAvpe/cvpi precisely equalsAmiVA

2/mec
25vce /vpe . This

ratio is much greater than unity in the present regime
interest, but, in the opposite regime, the electron ine
length c/vpe turns out to become much greater than t
Alfven ion lengthVA/vpı . At any rate, the solitons of eithe
regime always choose the greater length scale of the tw

The analytical strategy, with which we tackle the proble
of soliton propagation in a nonuniform plasma, is first
assume that the soliton retains its integrity throughout
journey.~In strict mathematical terms, this statement mea
that the soliton action remains form invariant.! We then treat
the soliton as a quasiparticle for determining its mean tra
tory. Although the equation of motion turns out to be rath
complicated, we have, nonetheless, taken advantage o
static background and been able to construct an integra
motion. With the help of this integral of motion, one is ab
to answer the question as to how and to what extent
soliton can become more and more focused in a nonunif
environment. We find that it is only when the soliton prop
gates into an ever-increasing density region that the sol
can become steepened and the Mach number increased

From Fig. 2, one notes that starting from a very sma
amplitude soliton whereMA→1, the background densit
needs to increase by many folds in order for the soliton
become sufficiently steepened. However, if one starts wi
soliton of moderate strength with a Mach number of ab
1.5, it requires the background density to increase to ab
twice as high to reach a state of wave breaking atMA52.
The possibility of wave breaking can have important imp
cations in solving one of the important problems in hig
energy astrophysics. Many astrophysical objects emit s
chrotron radiation in the radio wave band. The typic
magnetic field strength in environments such as the extra
lactic jets and the Crab Nebula is about mG, and to reach
radio frequency of GHz, it requires an electron energy ab
1 GeV or so. Furthermore, the relativistic electrons lose
ergy very rapidly. Therefore it remains to be explained as
how these high energy electrons are replenished@8#. One
possible solution entails solitons that are continuously in
ated at some core regions and break at distance as
propagate down the road where the background Alfv
speed decreases@10#. Unlike shock waves which lose energ
d
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on their way out, and hence cannot travel for long distanc
the solitons can dump their energy afar with vigor. This m
explain the observed bright blobs far from the obvious e
ergy sources at the compact cores@1–3#.

In fact, in our formulation of the problem, we deliberate
ignored the plasma temperature and let the background m
netic field be uniform. This choice has the advantage of h
ing an exact equilibrium background far from the solito
and isolating the parameter of nonuniformity to the plas
densityn0(x). Our result shows that the soliton Mach num
ber increases as the soliton travels into a background of
creasing density, or, equivalently, decreasing Alfven spe
Due to the simplicity of this formulation, which contain
only one nonuniformity parameter, we are unable to p
down whether the characteristic wave speed is the sole
rameter that controls the change of the Mach number
whether other background quantities also play some r
Our expectation for the characteristic wave speed to be
control parameter for changing Mach number arises from
common notion of wave steepening in shallow water wa
as they approach the sea shore. This phenomenon is o
understood as a result of a finite-amplitude disturbance ru
ing into a background that supports slower waves; conse
tion of the wave action forces the disturbance to beco
steeper. To resolve this issue, perhaps an extension
finite-temperature plasma, where an additional nonunif
mity parameter is present, will help.

Other than the above considerations, we also find in g
eral that the soliton energy, momentum, and mass are
conserved as the soliton travels through an inhomogene
background. This implies that the soliton can exchange
ergy, momentum, and mass with the background plasm
Only in the small-amplitude limit, where the soliton look
like the KdV type, can the soliton energy be conserved in
inhomogeneous environment. However, despite the ene
conservation, the soliton Mach number in this regime m
still change as the environments change.

There are some interesting and practical extensions
which the present formulation may apply. We may consid
a nonstatic background, say, containing a large-scale w
and look into how the soliton responds to the wave. If w
ignore the back-reaction of the soliton to the large-sc
wave but concentrate on how the wave affects the solit
the HamiltonianDH will be time dependent and, therefor
much like the dynamics of a classical particle, the solit
trajectory will become chaotic and unpredictable. At a mo
sophisticated level, one may also examine how a collec
of solitons react back to the large-scale wave. Can a phen
enon analogous to the~inverse! Landau damping for a col-
lection of collisionless particles ever occur in a collection
solitons? One may ask the following question: mediated
wave emission and absorption, is it possible for the solit
wave system to reach some kind of equilibrium distributi
that has been so profoundly established in classical mec
ics at the turn of the 20th century?
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APPENDIX: ASSOCIATION OF CHARGE SEPARATION
WITH THE vce@vpe REGIME

For simplicity and clarity, we will present a linear anal
sis that demonstrates the associations of charge separ
with the regimevce@vpe , and of charge quasineutralit
with the opposite regime. The latter regime is much m
commonly considered in standard plasma physics textbo
in connection with the lower hybrid waves, and the form
can actually be shown to yield a charged ion wave with
dispersion relation given immediately below Eq.~25!.

The linearized ion equations are

vdni5kn0dui , ~A1!

2 imivdui5e~dEx1dv iB0 /c!, ~A2!

and

2 imivdv i5e~dEy2duiB0 /c!. ~A3!

The linearized electron equations are

vdne5kn0due , ~A4!

imevdue5e~dEx1dveB0 /c!, ~A5!

imevdve5e~dEy2due /B0 /c!. ~A6!

The Maxwell’s equations read

kdEx52 i4pe~dni2dne!, ~A7!

vdB5kcdEy , ~A8!

kcdB5 i4pen0~dv i2dve!. ~A9!

Here we have assumed thatk5kx , dB5dBz , andv!kc, the
perpendicularly propagating compressional waves.

Subtracting Eq.~A1! from Eq. ~A4!, adding Eq.~A2! to
Eq. ~A5!, and combining the resulting two equations with t
Poisson’s equation, Eq.~A7!, we obtain a relation betwee
dEx and the transverse particle momenta:

dEx5
4pn0c

B0
~midv i1medve!, ~A10!

the linear counterpart of Eq.~15!.
Next, it is noted that in both lower-hybrid and charg

ion-wave cases, the electron inertia in thex direction can be
ignored. When we do so,dve can be solved from Eq.~A5!,
ion

e
ks
r
s

dve52
cdEx

B0
, ~A11!

which can be substituted into Eq.~A10! to yield a relation
betweendv i anddve :

midv i52S 11
vce
2

vpe
2 Dmedve . ~A12!

It is important to note the appearance of the factorv ce
2 /v pe

2

in the above expression. When this factor is much sma
than unity, i.e., weakly magnetized electrons, we find t
midvz1medve'0; upon referring to Eq.~A10!, we obtain
the charge quasineutrality,dEx'0. On the other hand, whe
the electrons are strongly magnetized,v ce

2 /v pe
2 @1, we find

that midv i'(v ce
2 /v pe

2 )medve@medve ; the ion transverse
momentum overwhelmingly dominates the electron tra
verse momentum, and

dEx'S 4pn0c

B0
Dmidv i . ~A13!

The above linear analysis has already made it clear as to
the parametervce/vpe is so crucial in differentiating the
present charge-separated solitons from the conventi
charge-neutral solitons.

To find the corresponding dispersion relation for each
gime, we have to consider the electromagnetic effe
throughdEy . Adding Eq.~A3! to Eq. ~A6!, and then substi-
tuting the resulting current anddEy from Eq. ~A8! into the
Ampere’s law, Eq.~A9!, we find a relation betweendEy and
the longitudinal particle momenta,

dEy5
v2

k2c2 S 4pn0c

B0
D ~midui1medue!. ~A14!

In fact, thex component of the electron inertia has alrea
been ignored previously to obtain Eq.~A11!, and hence the
electron contribution to the right side of Eq.~A14! should
also be ignored. This yields a relation betweendEy anddui .

The desired dispersion relations can finally be determi
by using the above results and solving the two coupled eq
tions for the ionx and y momenta. It is straightforward to
obtain that

v2

k2
5

VA
2

11~k2VA
2/vpi

2 !
~A15!

for vce@vpe , and

v2

k2
5

VA
2

11~k2c2/vpe
2 !

~A16!

for vce!vpe . Equation~A16! is a familiar dispersion rela-
tion, describing the lower-hybrid waves, and Eq.~A15! is
our finding in the strongly magnetized regime. The abo
analysis shows the essential differences, even in the lin
regime, between the strongly-magnetized-electron case
the weakly-magnetized-electron case.
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