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Charged magnetosonic solitons propagating in gentle density gradients and wave breaking
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A class of nonrelativistic magnetosonic soliton, where the charge-separation electric field can be as large as
the background magnetic field, is discovered in a strongly magnetized cold plasma, where the electron cyclo-
tron frequency is much larger than the electron plasma frequency. We study how the Mach number of such a
soliton is changed by the presence of a gentle background density gradient. An effective Hamiltonian for the
soliton trajectory is derived, with which one can show that the soliton Mach number increases as the soliton
travels to a background of increasing density, or equivalently, decreasing Alfven speed. The soliton can
generally exchange its energy, momentum, and mass with the background plasmas. Our results also show that
the soliton may undergo wave breaking at a finite background Alfven sp8&a63-651X97)12901-4

PACS numbgs): 52.35.Sb, 52.35.Mw, 98.38.Mz

[. INTRODUCTION way, do they become more focused or less focused? If the
solitons become more focused, will they reach a state of
In the context of astrophysics, collisionless plasmas tendvave breaking?
to occur in energetic environments where the plasmas are hot This question is important not only because of the trivial
and particle collisions are rare. Examples include the neutroenergetic consideration, but because an ever-increasingly fo-
star magnetospheres, pulsar nebulas, extended extragalaaticsed soliton can also be prone to coupling to dissipation,
radio sourcegjets), and others. These environments are bethereby heating the background plasmas which emit the ob-
lieved to be so energetic that characteristic waves, such aerved bright light. This phenomenon is anticipated from a
Alfven waves, and flows all have speeds close to the speed abmmon experience that when shallow water waves ap-
light. There is a variety of observational evidence substantiproach the sea shore, the waves become steeper and steeper,
ating the above assessments. For example, high-resoluti@nd finally break up not far from the shore. It is well known
radio maps show that bright blobs in the inner part of thethat the existence of a soliton arises from a detailed balance
extragalactic radio sources move at relativistic speeds awayetween the wave dispersion and nonlinear focusing. Propa-
from the coreg1]. Another distinct example is the “wisps” gation of a soliton into a gradually changing environment
in the Crab Nebuld2-6]. Optical images show that the must also affect such fine balance in some subtle ways. In
wisps waive quasicoherently on a time scale of several yearsertain circumstances, wave breaking analogous to that of
and a length scale of a couple of light years. No mattethe shallow water waves may occur. Our program of study to
whether they are blobs or wisps, these observationally iderfollow aims at an understanding of this aspect of solitons in
tifiable objects are some forms of large-amplitude coherentelativistic magnetoplasmas. This series of studies begins
fluctuations. These phenomena sparked the recent surge with the present analytical work, that addresses a simpler
interest in the study of solitons and shock waves in relativproblem for the propagation of a nonrelativistic soliton in a
istic collisionless plasmas—11]. magnetized plasma with a gentle density gradient. An under-
Several years ago, an interesting class of relativistic solistanding of its fundamental mechanism will surely help us
tons in magnetoplasmas was discovef@d0]. They differ  proceed to address the ultimate problem for the relativistic
from solitons in an electron-positron pair plaspd2] in that  solitons.
ion inertia plays an important role in setting up charge sepa- This program requires us to construct a counterpart of the
ration within the solitons, whereas electron inertia can beaforementioned class of relativistic solitons in the nonrelativ-
ignored altogether; thus electrons serve only to provide afistic regime. As we shall show in the following sections, the
electrically neutralizing background. These solitons haveprocedure of taking—oe for our relativistic soliton solutions
typical length scales on the order of the ion gyroradius, mucimust be carried out with caution since certain approxima-
larger than that of the conventional magnetosonic solitonsions, such as ignoring the electron inertia, which can be a
for which the electron inertia is of primary importanice2). good approximation for the relativistic regime but may not
Although ideal solutions for solitons in isolation have beennecessarily be so in the nonrelativistic regime, have been
obtained, one probably needs to be somewhat more conseadopted. For example, one must address which of the quan-
vative in applying them to explain the observed moving ob-tities ¢, the electron plasma frequency, aag,, the elec-
jects directly, since the astrophysical environments are not ason gyrofrequency, is larger in the nonrelativistic case.
ideal as one assumes to obtain these solutions. Among ﬂincewﬁe/wﬁez m;V a/m.c?, whereV, andc are, respec-
nonideal factors, we are most interested in the effects ofively, the Alfven speed and light speed amg andm, the
gentle changes in the environment on the solitons. As solilon mass and electron mass, there is no such problem in the
tons propagate they gradually enter new environments, andralativistic regime wherev,—c. However, it becomes a
guestion naturally arises as to whether the solitons may bgroblem in the nonrelativistic limit, in that the limg—oo
come more energetic or less energetic. Or, to put it anothenust confront the neglect of the electron ineftig.—0). In
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fact, careful scrutiny shows that, for the present analyses tthe time being. Associated with the wave are not only the
be self-consistent, one must choose the regime thatompressional density and magnetic fluctuations, but also
wpd w.e—0, suggesting that we are confined to stronglyvelocity fluctuations of the ions and electrons in brtandy
magnetized plasmas, which are likely to exist in astronomidirections. These velocity fluctuations are responsible for the
cal environments, such as at the active galactic nyalej. sources of the charge-separation electric field and magnetic
Since the soliton speed is greater than the Alfven speed, thigeld fluctuations. We may denotg andv; as thex andy
strongly magnetized regime also implies that it is in the en-components of the velocity, respectively, and the subsgript
ergy range well above 1 MeV, but still less than 1 GeV duedenotes the index for the species which can be either ion or
to the nonrelativistic treatments for ions. Thus this is theelectron.
natural extension from the fully relativistic regime to the In the following analysis, we assume that the absolute
nonrelativistic regime. For simplicity, we shall also assumevalue of the charge for the ion is the same as that of the
that both electrons and ions are cold. electron for the sake of simplicity. L¢qj|=e. It is straight-
Before beginning the analyses, we want to make soméorward to relax this assumption to a general case.
approximate arguments justifying why such a soliton should In the wave rest frame, the problem becomes a time-
exist. Whenw > w,, €lectrons are strongly tied to the field independent one, and we have the following governing equa-
lines, and any movement of electron guiding centers acrossons. The continuity equation for either species reads
the magnetic fields will have to drag the field lines along; in
this sense, electrons appear much heavier than the ions in a (Nu)=0 1)
serving as a relatively rigid neutralizing background. When dx > 1) '
the flow enters the soliton where the electrostatic potential is
positive, the ions are immediately retarded from the potential he momentum equations for either species are
well, whereas the electrons continue to march ahead together
with the field lines. These overshooting ions eventually are
pulled back with the magnetized flow because of the restor-
ing force. Charge separation due to the demagnetized ion
motion must in turn sustain the needed electrostatic potentif\nd
self-consistently.(Of course, the magnetized electrons are do
not infinitely heavy, and therefore their guiding centers in m; u;
fact are mildly retarded in response to the pull of the ions,

thereby yielding a local pileup of field lingslt is obvious 114 relevant Maxwell’'s equations are
from the above arguments that the length scale of the soliton

uji _ vj
m; u; a—qj EX+€BZ 2

i_ Yi
a—qj' Ey_FBZ . 3

must be of the order of the ion scale. On the other hand, the dB, A

above picture will have to break down if electrons are not ax ¢ E qjnjvj, (4)
strongly tied to the field lines, i.ew < wpe. In this regime, !

the electrons move more freely across the field lines, and can dE

respond to the electric force more sensitively. Therefore, not ———p, (5)
only can electrons easily shield out the charge-separation dx

electric field, but the electromagnetic effects can become o
primary importance. In this weakly magnetized regime, elec-
trons play a prominent role, and hence the length scale of dE,
interest is expected to be of the electron inertia length scale dx =4mY, q;n;. (6)
¢/ wpe [14,19. (A further elaboration on this issue is given in J
the A_ppend|x) . . . Equation(5) immediately gives

This paper is organized as follows. Section Il constructs
the ideal solution for a nonrelativistic soliton in isolation. An E,=Eo=const. (7)
action principle is proposed to examine the dynamics of the
soliton in a changing environment in Sec. Ill. This proposal Before manipulating further algebra, we turn to a discus-
yields an effective Lagrangian of a point particle representsion of the physical quantities, which a subscript “0” de-
ing the spatial integral of the soliton. Armed with this result, notes, in the uniform far upstream region. There is no elec-
the soliton trajectory for any given static background densitytric potential gradient far upstream, and hence the electric
profile is solved in the form of the integral of motion. We field becomes
give discussions and conclusions in Sec. IV.

EO:Eoy. (8)
IIl. NONRELATIVISTIC MAGNETOSONIC SOLITONS Together with this relation, Eq2) yields that
The physical condition to be considered consists of a vjo=0, 9)

background magnetized plasma with the magnetic field .
the z direction and a compressional wave propagating in thd=d. (3) yields
x direction. The gentle background density gradient is in the

Qirection. of wave propagatior_L For the cons_truction of an Ujp=¢ —OEUO, (10)
ideal soliton solution, we may ignore the density gradient for Bo
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the EXB drift, and Eq.(6) yields Thus far, we have completed our construction of conserva-
tion laws for such a dynamical system, to be followed by
Nip=Ngo=nNg. (11) some algebraic manipulations for deriving a useful soliton

equation.

It is a straightforward matter to construct the conserved We proceed to assume that the electrons are frozen in the
fluxes. Besides Eq(l), that represents the conservation of field lines by ignoring the electron inertia in Edg) and(3).

mass flux for each species, which yields As it will become clear that the change Bf is of order the
background fieldB,, the electron driftu,(=cEy/B,) is

njuj=noUo, (120  therefore of orderug(=cEy/Bgy). In addition, the ion

x-component velocity; will also be of ordemg, so it hence

we also have a conserved energy flux follows thatm.u2<m,u? andmyu,<m;u; . These orderings

of terms take effects on Eqggl4) and(17), and also on th&
c component of the kinetic energy in E(QL3), where these
TO= 12 nouglm;(u?+v?)]+ 2, EoBzr (13 electron contributions can be neglected.
: Next we compare the transverse momentum fluxes of ions

I . nd electrons in Eq(15). If the ion transverse momentum
where the second term on the right is th_e Poynting _flux, an(ﬁux dominates and we ignore the electron contribution, it
there are conserved momentum fluxes in thendy direc- follows that
tions, respectively:

Ui:EoEX/47Tmin0UO. (18)

1
11_ 2 2_pE2 . .
T —zj: NoUo(Mjup) + 5~ (Bz+Eo—E), (14 gince the electrons undergo tEe<B drift, we have

and Ve=M.CE,/Mm.B,. (19

Comparing the two transverse momenta, we find that

Mvi/Mev e~ O(M;V 2/MC?) ~O(w 2/ w 50). As mentioned

in Sec. I, we shall fix our parameters in the strong magnetic

field regime, and therefore the above ratio is much greater

The second equality of Eq15) results from the vanishing than unity; the ion transverse momentum flux indeed domi-

vjo andE,q far upstream. nates in Eq(15), indicating the validity of thde XB electron
Analogous to what was discovered in the previous reladrift motion.

tivistic case, we may also construct another conservation law With all the above considerations, we may solve Byr

for a time-independent problem in the nonrelativistic regime from Eq.(13), with u; expressed in terms @f from Eq.(17),

Multiplying the x component of the momentum equation, andv; andve in terms of E, from Egs.(18) and (19). Fi-

Eq. (2), by mjg;/e, and summing up the resultant equationsnally, as we substitute thB, into Eq.(14) and again express

1
T2=2) Nolo(Myv;) = 7— EqEx=0. (15)
j m

for both species, we find that u; in terms of¢, we obtain an equation that almost relags
with ¢,
E—[(mu»)Z—(mu )2]=€eE| m+m +i 1 [de)? 4men, 1 [Vi, me?\[de\?
2dx - ee o R R PPRISTIN S| +1- = [ o+ —— || ==
B | dx Bg 2B5 | 2¢c=  myvy/ |\ dx
l*'j2+012 2 2 172
—eE m:l 1— 8mm;ngu 2e
X 2 J( 2C2 +1) — |20 0 ( — QZ) —1:|:0 (20)
Bo m;Ug
TOl
Pl (16)  The third term in Eq.(20) contains those that are propor-
0™0 tional to (d¢/dx)2 They have small coefficients in compari-

. . . son with the first term in Eq(20), as we are confined to a
where we have employed E@.5) to obtain the first equality, onrelativistic (V2/c2<1) and strongly magnetized

and Eq.(13) to obtain the second equality. For a nonrelativ- 2502 22 -
istic formulation where we have already ignored terms of(r-neC IMVa=wpdwee=<1) plasma. One may trace the ori

5 2 ; o gins of these negligibly small terms, and find that they come
ordervj/c*, terms of this order appearing in E4Q6) should  ¢om the jon and electron transverse kinetic energies,2/2
have bgen droppeq for th'e sak_e of self-consistency. E,’es'd§ndmev 212, respectively, in E13). Thus not only does the
the obvious terms in the right side of the second equality Ofjectron inertia completely drop out in the final equation, but
Eq. (16), we may examine the term proportional®®' in Eq. the ion transverse energy flux also drops out.

(16). This term is also of ordev{/c® (or V 2/c?) compared Rearranging Eq(20) and dropping the undesired terms,
with the remaining term, and thus we drop it. Also ignoring ;e finally arrive at the soliton equation

me in comparison withm; , we finally reduce the right side of
Eq. (16) to emE,. Let E,=—d¢/dx, and we arrive at the

2
conservation law E (W

+U(P)=0, (21

Q=3 (mfuf —miul) + meg. (A7) where
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FIG. 1. Typical “pseudopotentials’U(®) in Eq. (22) for the
soliton solutions. Plotted are the four(¢)'s for M,=1, 1.6, 2, and
2.4 in sequence beginning from the top.
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U(<I>)=7 (1-VJ1-9) —TCID . (22

d=2e¢p/mu3, n=2eByx/mu3, and M =uy/V, is the
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)
B,=By l+§ , Ex=—Bg W (25

In addition, we may examine what type of linear waves they
are in association with such solitons by dropping difeterm

in Eq. (23). Differentiating both sides of Eq21) with re-
spect tox, we take a spatial Fourier transforr/dx— ik,
and let the phase velociy/k=u,. We obtain the dispersion
relation w?/k*=V3/(1+k?Vi/w3), which recovers the
compressional Alfven wave at long wavelengtbslso see
the Appendix).

Thus far, we may cast the question this paper intends to
address in the following terms. Given the soliton derived
above propagating in a gentle density gradient, will its Mach
number increase or decrease? If the former, the soliton will
steepen and is prone to collisionless dissipation; if the latter,
the soliton will become more dispersive. In the following
section, this question will be answered.

Alfven Mach number. Note that the length scale of the solu- |, AcTION PRINCIPLE AND INTEGRAL OF SOLITON

tion is aboutVa/wy; or rcValc<r., wherer. is the ion
gyroradius usingug as the typical speed. The solutich
oscillates in the “potential well’U(®) from one zero olJ
to the other.

Plotted in Fig. 1 ardJ (®) for various Mach numbens] , .
For small®, the “potential” U(®)~—M3(M3—1)d%8,
yielding a decaying solutiod ~exp(-Ma/M2—1|5|/2) at
large distances. The behavior shows that the solution is
soliton. WhenM ,=2, the “potential” U(®P) becomes singu-
lar atd=1, whereU(®)=0 and the solution captures a sin-
gularity. This singular point occurs at the far side zerdJof

MOTION

In the presence of a gently varying static background, we
may assume that the soliton remains as a localized distur-
bance, not much different from the ideal solution constructed
in Sec. Il. If we let the ratio of the soliton width to the typical
length scale of the background be a small parameténe
&oliton shape and the Mach number may both change by an
amount of ordefe. In spite of these changes of orderwe
assume that the action for the soliton is form invariant, as a
functional integral of® [cf. Egs.(27) and (28) below]. As

corresponding to a cusp at the soliton peak, where coupling,n4 a5 the form of the action is preserved, the construction

to collisionless dissipation becomes inevitable and the soli

of the soliton trajectory in the following analysis depends

ton must break. On the other hand, a soliton of a moderatﬁ.me on how the soliton shape becomes modified.

strength has a typicaE,=O(B,), which is much greater
thanE, by a factorc/V, . That is, this soliton is dominantly

Since the soliton can be either accelerated or decelerated,
it is only appropriate to work out this program in the labo-

sustained by the charge separation rather than the electijgi,ry frame of reference, where the background is at rest,

current alone.
We may expandl (®) further for a smallkd and keep up
to the ®* term. One finds

2
A

(@)=~} Te

Ma(MA—1)D2%+ — O3+ 0(P%). (23

rather than in the soliton frame as carried out in Sec. Il. This
requires us to transform all physical quantities derived above
to the laboratory frame before the construction of the La-
grangian. In the relativistic framework, the Lagrangian den-
sity is Lorentz invariant. In the nonrelativistic framework,
the electromagnetic part of the Lagrangian density,
(E2-B?/8m, is frame independent, the particle part
m;n;v?/2 should be changed ton;n;(v;—ueX)¥2 when

Up to this order, the soliton solution can be expressed in aBhanging to the laboratory frame, and the interaction part

analytical form,

MV (MA—1)
A+7’ . (24)

d~2(M;5— 1)sec|‘f(

This small-amplitude soliton solution can only be self-
consistent wheM ,—1<1, and this expression is identical to

the Korteweg-de Vries soliton of shallow water. The ampli-

tude scales aM,—1, and the length as {M,—1. To be

complete, we list relevant physical quantities expressed in

terms of® in this small-amplitude regime,

2(q;njv;Ay/c—q;n;¢) also remains the same. Moreover,
we must also ignore some minor terms in the particle kinetic
energy, such as the electron inertia ang) 2/2 in the La-
grangian density, in order to be consistent with the expres-
sion of T% used in deriving the soliton. It follows that the
total Lagrangian in the laboratory frame becomes

0

1
-

1
> Mini(ui—ug)®~ g— (BI—EZ-EY)

1 d’¢ 1 dB,

a7 P o 4 N ax |9

(26)
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Certain technicalities must be mentioned before computing Having the Lagrangian, we are in a position to construct
L. That is, the last term in the integral involves the vectorthe equation of motion using the action principle
potentialA, , which does not appear in our previous analysis.

To handle this term, we note that

5s=f S[Lo+AL(ug,x)]dt=0. 27)

= dB, " >,
f A ax dx=AyBZ|,m—f Bsdx
o o In principle, with the above rather general formulation, one
% is not restricted to a static background for determining the
—f (BoB,—B2)dx. equation of motion of the soliton. For a slowly time-
dependent background, either one may treat the background
] ) ) as a given function ok andt, or, to be self-consistent, one
The second equality arises from another notion that whegay also consider the mutual interactions between the back-
X=*, B,=B, and ground and soliton using this Lagrangian formulation. For
the former with a given background, one need not consider
" Lo, but, for the latter, the full Lagrangian must be taken into
Ay|°im:f B,dx. account as shown below.
o Variation of L, yields the equation of motion for the
background, which is, in the present case, reduced to the

A straightforward but somewhat tedious calculationforce balance equation
shows that the total action can be cast into the form,

—o0

dBj

—— =, 30
szf L dt, 27 dx (30

where or By=const. Without particle pressure, indeed only in a uni-
form magnetic field can the background maintain force bal-
ance.
o B% Variation in AL, however, presents some technical diffi-
L=- f_w 16w dx culty in obtaining an analytical result. This is becadses
some complicated function af and M, which has no ana-
BIM3 [ ®max 1-1/\1-® lytical expression let alone the integral of E@8). Hence

—— D —— > dP the equation of motion can only be constructed numerically.
8meny Jo [MADP“=4(1-V1-D)] A way to circumvent this technical difficulty and to pro-

=Lo+AL(Ma,no), (28) cged_ further.is to look for the integ'ral of motion. For_tunately,.
this is possible because the soliton propagates in a static
] background, and the Lagrangian therefore has no explicit
where L, represents the background Lagrangidr, the  (ime dependence. The constant of motion is the Hamiltonian
soliton Lagrangian, an@ma,=4(Ma—1)/M 4. In Eq.(28),  H(uy,n,(x)). Using Egs.(21) and (22), it is a straightfor-
we deliberately express all parametersAh in terms of  \yard matter to obtain an integral expression for the Hamil-
M, Ng, andB, for the sake of convenience when used later tgnjan, defined to be
Since B, is uniform, the dependence dvi, and ny(x) is
equivalent to dependence og andx; that is, analogous to

the classical particle dynamics, the relevant Lagrangian is a JL
function of the soliton velocity, and positionx. H=u, ——L. (31

Retracing what %+ (1/y/1—®) means in Eq(28), we find 9Uo
that (1/1—®)—1x<An;=n;—ny, and that the Lagrangian
of the soliton is nothing more than the kinetic energy of anThus one finds that
ion density excesan;,

*° B(Z) BSMA Jq)max
% H(Ma,ng)= o= OX+ ———
AL=§] muZAn,dx. (29) (Mo Lo g7 7 TenZen, Jo
N( MA 1CI))

This is a rather surprising result, in that all other contribu- X[Mid>2—4(1— \/m)z]l/z do
tions from the particle velocity variations and field variations
associated with the soliton are completely canceled as if the =Ho+AH(Mg4,ng), (32

soliton were a localized and structureless density excess in
motion. where
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4(2—Mp)

20 +
M2

N(MA1no)EMi

1 2(2—Mp)®
JiI—® (1-D)%2

. (MAD2+4(2— M) (MAD+4)P(1— 11— D) +8(2— M) D2/ (1— D)
M2D2—4(1— 1— D)2 '

(33

HereH,andAH are the corresponding Hamiltonians for the moves up, or down, the density gradient. In fact, the soliton
background and the soliton, respectively. The exact funcmoves toward the higher energy configurations as the back-
tional form of AH(M4,ng) has to be determined from nu- ground density, or the Mach number, increases. One may
merical integration. OncAH is determined, we will have further find that neither the soliton momentum nor the soliton
basically fulfilled our goal for this work, in that given an “mass” (total number of particles within the solitprare
initial soliton of Mach numbeM ,(t=0), when it enters a conserved. These findings may seem somewhat unusual.
background of different density, we can obtain a differentHowever, if one realizes that the background can serve as a
value of M, by looking up to the constant contours of reservoir for the soliton to exchange energy, momentum, and
AH(M,,ng). even mass, these results would not be so surprising. As the
Plotted in Fig. 2 with the bold line is a contour of constantsoliton passes through an inhomogeneous medium, the
AH(Ma,ng). The general trend is tha¥l 5 increases with downstream background left behind by the soliton may be
increasingng(x) or decreasing background Alfven speed modified by a small amount of order Accumulation of
Vao(X), and the soliton becomes steeper as a result. Becausgany changes of orde¢, after the soliton travels a long
of several singular terms in the integrand of E2p), it may,  distance, can eventually produce a finite change in the soli-
at first glance, seem that the integral should diverge aton energy, momentum, and mass.
M =2 when®,,,=1. These infinities, in fact, turn out to In addition, we may take advantage of the soluble regime
completely cancel, and a finite total integral is obtained.  of small-amplitude solitons wher®l ,—1<1, and examine
Also plotted in Fig. 2 with the thin lines are the contours how AH should behave. We exparl of Eq. (28) in the
of constant total energy contained within the soliton in thelimit of small M ,—1 and®, and then use Ed31) to derive
laboratory frame, the Hamiltonian for small-amplitude solitons. Replacing the
soliton solution from that in Eq(24), one obtains that

e [ a7 gy BIM3 [ ®max 5

W= | AT dX= e Jo Bo
—% AHx n—e (Mp— 1)1/2+ O((MA_]-)s/Z)- (39

0

4D +6\1-D—8+MiD%+2/\1- D . (3
X . In this small-amplitude limit, along the constaaAtH, the
2H2_ _ 1 _ 21172 ’ ’
[MaA®"=4(1-v1-0)7] soliton Mach number changes &k, —1xn3.
To understand this result, by which the KdV-type soliton
bides, we may look into it from another perspective. The
mall-amplitude limit of the soliton energy reads

The upper thin line has 1.5 times as much energy as the
lower thin line. As expected, the background energy densit
can be found to be identical to the background Hamiltoniar®

density. What is somewhat unexpected is that the constant B3
AH contour does not coincide with any of the constaiy AW —2 (MA—1)Y24+0((Mp—1)%?), (36)
contours. Thus the soliton energy is not conserved as it Noé

after one carries out similar procedures. Note that and
AW differ only by a constant in this limit, indicating that the

1.8 -~ constant energy contours track the constant Hamiltonian con-
tours. The soliton energy is conserved regardless of whether
1.6 the small-amplitude soliton propagates in an inhomogeneous
MA or homogeneous background. Hence we conclude that it is
1.4 only for a finite-amplitude soliton that exchange of energy
- with the background is possible.
1 ' IV. DISCUSSIONS AND CONCLUSIONS
[o] 10 20 30

n, In a series of works to follow, we aim at a thorough
understanding of how solitons, in particular relativistic soli-
FIG. 2. The contoutheavy ling of constantAH(M 4 ,n,) inthe  tONS, travel in a slowly varying environment. Specifically, we
(M4 ,n,) phase space, and the two conto(gisallow lineg of con-  are interested in how and to what extent the soliton can be-
stantAW in the same phase space; the lower thin line assumes @0me more and more focused as it travels through such an
value of AW, the same adH, and the upper thin line a value 1.5 environment. As a first step toward this goal, we study a
times as large adH. simpler case in the present work, where the soliton travels at
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a nonrelativistic speed in a cold and strongly magnetizean their way out, and hence cannot travel for long distances,
collisionless plasma. A magnetosonic soliton solution inthe solitons can dump their energy afar with vigor. This may
such a plasma is constructed, and the validity of the solutioexplain the observed bright blobs far from the obvious en-
only holds whenwe> w,e. A soliton of this type is much ergy sources at the compact cofés-3].
like a moving capacitor, charged with an electric field com- In fact, in our formulation of the problem, we deliberately
parable to the background magnetic field. Although it alsdgnored the plasma temperature and let the background mag-
carries a self-consistent electric current to keep the backetic field be uniform. This choice has the advantage of hav-
ground magnetic field compressed, the soliton consists prid an exact equilibrium background far from the soliton,
marily of an electrostatic disturbance. This class of solitongnd isolating the parameter of nonuniformity to the plasma
differs significantly from the conventional magnetosonicdensityng(x). Our result shows that the soliton Mach num-
solitons, for which the electron inertia plays an importantber increases as the sollt_on travels into a _background of in-
role and the charge-separation electric field becomes neglfréasing density, or, equivalently, decreasing Alfven speed.
gibly small[14,15]. Due to the S|mpI|C|ty. of this formulation, which contains
These conventional solitons of an electron inertia lengtiPNly one nonuniformity parameter, we are unable to pin
scale are primarily of electromagnetic disturbances, and cafown whether the characteristic wave speed is the sole pa-
only exist in the opposite regime to what is under considerf@meter that controls the change of the Mach number, or
ation in the present workConsult the Appendix for details. Whether other background quantities also play some role.

In fact, if we compare the Alfven ion leng¥,/w,,; with the Our expectation for the characteristic wave speed to be the
electron inertia lengthc/w,,, we find that their ratio control parameter for changing Mach number arises from the

: _ ; tion of wave steepening in shallow water waves
Vawpdcop,; precisely equals/mVa/mec?= wee/ wpe. This ~ COMMON No _ _
ratio is much greater than unity in the present regime of* they approach the sea s_h_ore. Th'.s phen_omenon is often
interest, but, in the opposite regime, the electron inertié‘nderStOOd as a result of a finite-amplitude disturbance rush-

length c/w,e turns out to become much greater than the!NY into a background_ that supports sI(_)wer Waves, conserva-
Alfven ion IengthVA/wp,. At any rate, the solitons of either tion of the wave action forces the disturbance to become

regime always choose the greater length scale of the two. sje;eper. To resolve this issue, perhaps an extension_to a
The analytical strategy, with which we tackle the problemflnlte-temperature plasma, where an additional nonunifor-

of soliton propagation in a nonuniform plasma, is first tom'té ﬁararr?eterhs ptrjesent, W|I_Idhelp_. Iso find |
assume that the soliton retains its integrity throughout the ther than the above considerations, we also find in gen-

journey. (In strict mathematical terms, this statement meansera‘I that the soliton energy, momentum, anq mass are not
that the soliton action remains form invarignVe then treat conserved as the soliton travels through an inhomogeneous

the soliton as a quasiparticle for determining its mean trajec
tory. Although the equation of motion turns out to be rather
complicated, we have, nonetheless, taken advantage of t
static background and been able to construct an integral o
motion. With the help of this integral of motion, one is able
to answer the question as to how and to what extent th
soliton can become more and more focused in a nonuniforr
environment. We find that it is only when the soliton propa-
gates into an ever-increasing density region that the solito
can become steepened and the Mach number increased.
From Fig. 2, one notes that starting from a very small-

background. This implies that the soliton can exchange en-

ergy, momentum, and mass with the background plasmas.
nly in the small-amplitude limit, where the soliton looks

5’ e the KdV type, can the soliton energy be conserved in an

inhomogeneous environment. However, despite the energy

gonservation, the soliton Mach number in this regime may

till change as the environments change.

There are some interesting and practical extensions to
thich the present formulation may apply. We may consider
a nonstatic background, say, containing a large-scale wave,
and look into how the soliton responds to the wave. If we

amplitude soliton whereM ,—1, the background density ignore the back-reaction of the soliton to the Iarge-sc_:ale
needs to increase by many folds in order for the soliton thaV|e_| bufcltconceE:ate_”oS ht(.)w tge wa\(/je ziffec(tjs ttr:]e sfollton,
become sufficiently steepened. However, if one starts with (ije amiitonian will be ime dependent and, theretore,

soliton of moderate strength with a Mach number of aboufMtch like the dynamics of a classical particle, the soliton

1.5, it requires the background density to increase to aboujfajectory will become chaotic and unpredictable. At a more
twice as high to reach a state of wave breakingVgt=2 sophisticated level, one may also examine how a collection

The possibility of wave breaking can have important impli- of SO|It0nS| react back to the IarEe-s(;:aledwave_. Ca:cn a phePom-
cations in solving one of the important problems in high-enon analogous to thenversg Landau damping for a col-

energy astrophysics. Many astrophysical objects emit SynI_ection of collisionless particles ever occur in a collection of
chrotron radiation in the radio wave band. The typicaISOI'tonS? One may ask the following question: mediated by

magnetic field strength in environments such as the extragé(‘—""“’e emission and absorption, is it possible for the soliton-

lactic jets and the Crab Nebula is about mG, and to reach th¥2V€ system to reach some kind of equilibrium distribution
radio frequency of GHz, it requires an electron energy aboul at has been so profoundly established in classical mechan-

e . ?
1 GeV or so. Furthermore, the relativistic electrons lose en!CS @t the turn of the 20th century?

ergy very rapidly. Therefore it remains to be explained as to

how _these hlgh energy eIe_ctrons are replenl_s[ﬁid Ong 3 ACKNOWLEDGMENTS
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APPENDIX: ASSOCIATION OF CHARGE SEPARATION COE,
WITH THE @.¢> wpe REGIME de=——p—
0

(A11)

For simplicity and clarity, we will present a linear analy- ] . . . _
sis that demonstrates the associations of charge separati$ffich can be substituted into E¢A10) to yield a relation
with the regimew.s>w,e, and of charge quasineutrality Petweendv; and dve:
with the opposite regime. The latter regime is much more

commonly considered in standard plasma physics textbooks mévi=—|1+ w—ge mgdv (A12)
in connection with the lower hybrid waves, and the former e Se e
can actually be shown to yield a charged ion wave with its
dispersi_on re_lation_ given im_mediately below Eg5). It is important to note the appearance of the faeﬁ@g/w,%e
The linearized ion equations are in the above expression. When this factor is much smaller
than unity, i.e., weakly magnetized electrons, we find that
wdn;=kngdu; , (AD) v+ m,du,~0; upon referring to Eq(A10), we obtain

the charge quasineutralitgfE,~0. On the other hand, when
the electrons are strongly magnetizesf/ w 5.>1, we find

—im;wdu;=e(SEx+ dviBy/c), (A2)  that m;dv;~(w3d w50 Medv>Medv,; the ion transverse
momentum overwhelmingly dominates the electron trans-
and verse momentum, and
—im;wdév;=e(SE,— du;By/c). A3 4mnoC
im;wdov;=e(SE,— ou;Bo/c) (A3) 5Ex"~‘( B0 m, Sv;. (AL3)
0

The linearized electron equations are

The above linear analysis has already made it clear as to why

the parametemw ./ w,e is so crucial in differentiating the

wdN=Kknydu,, (A4) present charge-separated solitons from the conventional
charge-neutral solitons.
To find the corresponding dispersion relation for each re-
iMew U= e(SE,+ dvBo/C), (A5) gime, we have to consider the electromagnetic effects

through6E, . Adding Eq.(A3) to Eg.(A6), and then substi-
tuting the resulting current andE, from Eq. (A8) into the
Ampere’s law, Eq(A9), we find a relation betweesE, and

IMew v = €( By~ dUe/Bo/C). (A6) the longitudinal particle momenta,
The Maxwell's equations read w? [4mngc
5Ey=k2—02 (B—o)(m, SU;+mgduy). (A14)
kSE,=—i4me(on;— ny), (A7)

In fact, thex component of the electron inertia has already
been ignored previously to obtain EgA11), and hence the
electron contribution to the right side of EGA14) should
woB=KkcoEy, (A8)  also be ignored. This yields a relation betwe, and ou; .

The desired dispersion relations can finally be determined
by using the above results and solving the two coupled equa-

kcéB=idmeny(Sdv;— dv,). (A9) tions for the ionx andy momenta. It is straightforward to
obtain that
Here we have assumed that k, , 6B= 6B,, andw<kc, the
perpendicularly propagating compressional waves. w? Vf\
Subtracting Eq(Al) from Eq. (A4), adding Eq.(A2) to K mm (AL

Eq. (A5), and combining the resulting two equations with the

Poisson’s equation, EqA7), we obtain a relation between fqr ®ee> Wpe, and
SE, and the transverse particle momenta:
w? Vi
i@ T4 (Rellwly) (A1
41ngC pe
OB= Bo (M dv;+Medve), (A10) for wee<wpe. Equation(A16) is a familiar dispersion rela-

tion, describing the lower-hybrid waves, and E&15) is
the linear counterpart of Eq15). our finding in the strongly magnetized regime. The above
Next, it is noted that in both lower-hybrid and charged analysis shows the essential differences, even in the linear
ion-wave cases, the electron inertia in thdirection can be regime, between the strongly-magnetized-electron case and
ignored. When we do saju, can be solved from EqA5), the weakly-magnetized-electron case.
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